网站推广三步走:十秒注册 -> 提交网站 -> 快速审核 -> 带来无限流量和外链 -> 点入及点出一次即可排名第一位

当前位置:66网站目录 » 站长资讯 » 科技资讯 » 文章详细

OpenAI新研究:让小模型来监督大模型能显著提高泛化性能

来源:网络 浏览:55次 时间:2023-12-26

简介:人工智能的超级对齐问题在未来AI系统超越人类智能的情境下变得尤为复杂。研究小模型是否能够有效监督大模型成为关键问题。期待研究者在这一领域取得更多的突破。

12月15日 消息:人工智能的超级对齐问题在未来AI系统超越人类智能的情境下变得尤为复杂。研究小模型是否能够有效监督大模型成为关键问题。当前的对齐方法主要依赖于人类监督,但超级AI的复杂和创造性行为使得人类难以可靠监督。

为了解决这个核心挑战,研究提出一个创新的思路:能否用一个相对较弱的模型来监督一个更强大的模型。这种思路直观上可能让人觉得强大的模型会模仿弱监督者的错误,然而,研究发现,通过一种简单的方法,能够显著改善模型在多个领域的泛化性能。

image.png

文章地址:https://openai.com/research/weak-to-strong-generalization

研究采用了GPT-2级别的模型作为弱监督者,对GPT-4进行微调,取得了令人瞩目的效果。通过鼓励强模型更加自信,甚至在需要时与弱监督者有所不同意,研究展示了在自然语言处理任务中,能够以较弱的监督实现接近GPT-3.5级别性能的模型。

这种方法不仅是概念上的证明,同时也揭示了一些重要的局限性,如在ChatGPT的偏好数据上仍然存在问题。

研究结果表明,传统的人类监督方法在超级AI模型上可能不够可行,但弱到强泛化的方法却有望显著提高模型的性能。

虽然实验设置与实际对齐超级AI的问题存在差异,但这种方法为今天在这个问题上取得实证性进展提供了一种新的方向。未来的研究机会包括修复实验设置中的差异,开发更好可扩展的方法,并推进对弱到强泛化何时以及如何能够有效的科学理解。

对于机器学习研究社区而言,这是一个激动人心的机会,为超级AI对齐问题提供了实际进展的可能性。为了推动更多的研究,研究团队提供了开源代码,使得进行弱到强泛化实验变得更加容易,并启动了一项1000万美元的资助计划,鼓励研究生、学者和其他研究人员在超级AI对齐领域进行研究。

在当前背景下,解决如何使未来的超级AI系统安全对齐的问题变得比以往任何时候都更加重要,而现在我们有了更便捷的方式来取得实证性进展。期待研究者在这一领域取得更多的突破。

推荐站点

  • 聚站网聚站网

    聚站网,免费提供网站目录分类检索,收集正规的中文网站,用户自主的网站提交,为各行业分类目录收藏,聚站网努力打造优质丰富的网站收录平台。

    www.565865.com
  • YY分类目录YY分类目录

    YY分类目录全人工编辑的开放式网站分类目录,收录国内外、各行业优秀网站,旨在为用户提供网站分类目录检索、优秀网站参考、网站推广服务。

    www.yydir.com
  • 66网站目录66网站目录

    66网站目录是免费收录各行业优秀网站,提供网站分类目录检索,关键字搜索,提交网站即可免费推广,增加外链,提升网站流量。

    www.66dir.com
  • 25分类目录25分类目录

    25分类目录专业提供网站网址免费提交收录,25分类目录是采用开放导航式的网站大全,收录国内外各行业优秀的网站网址,让网站在各大搜索引擎收录快排名靠前。

    www.25dir.com
  • 和讯科技和讯科技

    和讯科技是和讯网核心资讯频道,以报道科技中国,分享全球智慧为目标,为高端财经网络用户提供有关TMT产业领域及时、快速、全面的资讯报道。

    tech.hexun.com
  • 百度搜索百度搜索

    百度,全球最大的中文搜索引擎、最大的中文网站。

    www.baidu.com